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AMrae&-HMO-calculations of charge-transfer absorptions are reported for the “pseudoortho” and “pseudogemi- 
nal” orientations of 1,4-benzoquinone and hydroquinone. This approach is used to explain the difference in the 
charge-transfer absorptions which have been observed for the corresponding ~tr~olec~~ quinhydrones 1 and 2. 

Recently the syntheses of several intramolecular charge- orbital vi to (ph. The bond-order matrix of the excited state 
transfer (CT) systems of the [2.2]paracyclophane series is PC”. The total charge Qd” on D is calculated analogous 
were reported where donor/acceptor pairs are fixed in to Qb. The criterion K, is defined as follows 
different o~en~tions.‘-3 The two di~tereomeric in- 
tramolecular quinhydrones I and 2 are typical examples. K,: Q~--&*‘>Q~-QA“-~ AQ~-Q~““>O. 

The sum of QI, and Q,, resp. QIJbk and QAr-” in our case 
being constant, criterion K, can be simplified to 

0 
K,: Q~--Q,“‘>OAQ~-Q~~~<O. 

The sum R of the bond indices’ between D and A can 
I 2 serve as a measure of binding between D and A: 

The “p~udo~rnin~ compound 1 and the “pseudoor- 
tho” compound 2 differ remarkably in their charge- 
transfer spectra:’ 1 shows a strong broad CT absorption 
between 4QO and 600 nm with A, = 500 nm and c - 1700; 
in 2, however, this absorption is considerably reduced in 
intensity (E - 170) and somewhat shifted to longer 
wavelength (A,, = 515 nm). ~~ermore the spectrum of 
2 shows a shoulder at A - 377 MI (e - 730) whereas 1 has 
a marked absorption minimum in this wavelength area 
(A,,. = 355 run). 

We made simple HMO-calculations to explain the 
diflerence in the spectra of 1 and 2 which must be due to 
the different donor/acceptor orientations. We used 
one-electron theory because we were mainly interested in 
qualitative conclusions. For this purpose, extended 
all-valence calculations were not considered advantage- 
ous since they do not seem to be able to reproduce the 
stability of such CT complexes correctly.“ 

P” is the bond-order matrix of a donor (D)-acceptor (A) 
system without any interaction between D and A. The 

total charge on D is QDo = i P$. The interaction between 

D and A shall be characierixed by the parameter u. 
P = P(a) is the bond-order matrix of the DA system with 
u # 0. Analogous to Qd one gets QD. Now it is possible to 
formulate the following criterion: 

Ko: QD” > QD A QA’ < QA. 

R = 2 i (P,J’ resp. R” = i i (P;“>*. 
I t I * 

A further criterion K2 may be obtained: 

K2: R<R”. 

The second order CT-effect @ is defined as follows6 

CT? ca K, true A K1 true. 

Since 

cpi = 2 CiiXl 
I 

with 

(,&J = 6.r 

K, and K2 can be formulated in terms of the coefficients 
ch: 

D 

K,: FfCt-c;.)>Oh &-c:J<O 
I 

D A 
Kz: z c (C&, - ‘?&,,)(‘hckt - C&t + 2 . PSI) > 0. 

t t 

The norm \+d of the transition moments k-L are simply 
taken as 

The first order CT-effect CT’ is defined as follows6 (CL&.&I = (&.. + &k#+ &.JR 

CT’:# K, true with 

CT’ describes the fact that charge is transferred from D to 
A in the ground-state. Now consider an excitation from 
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(x,: x-coordinate of atom s) and likewise for y and z. 
For our purpose it seemed sufficient to use simplified 

geometries, e.g. the l&benzoquinone (A) and hydro- 
quinone (D) rings parallel to each other, bond length all 
l-397 A and bond angles 120’. The distance between D 
and A was fixed at 2.95 A (cf. mean value in 
[2.2)benzoquinophane’). The following HMO-parameter 
values have been adopted9 (all values in units of the 

I II 

a 
0.0s 015 0.2s 0 4 

LUMO 
‘lo b 

05 

1 2 Results 

a 
026 6-b 

Both compounds 1 and 2 (resp. I and II) show a 
CT’effect for o# 0. Compound 1 (resp. I) is more 
stabilized than 2 (resp. II) when o increases from u = 0 to 
u =0.25. The four lowest transitions of 1 and 2 are 
excitations from the four highest occupied orbit& (~6 to 
‘p9 to the lowest unoccupied orbital cplo (LUMO). The 
excitation to the next higher unoccupied orbital cpll 
requires much higher transition energies (B1.4). Figure 1 
shows for the 1,4+enzoquinone/hydroquinone orienta- 
tions I and II and for the corresponding intramolecular 
quinhydrones 1 and 2 the orbital energies e for the four 
highest occupied (‘p6 to (pp) and the lowest unoccupied 
(LUMO, cplO) orbitals as a function of u. The resulting 
four lowest electronic transition energies Ari,t together 
with the transition moments p,-t are shown in Fig. 2. 
Three of these excitations ((Ps+ cplo, ‘pa+ cplo, (p6+ cp,~) are 

a5 

Fig. 1. Orbital energies t, lo cl0 in units of the (negative) 
resonance integral for the quinhydrone geometries I and II and for 

the compounds I and 2 as a function of v. 

resonance integral): 

ac=o, a’o= 1, QO- = 2.5 (simulating the OH-group) 

j?cc = I, /3co = I, &o- = 0.8. 

For 1 and 2 the influence of the -CHrCHr bridges is 
simulated by acXHI = -0.2. I and II correspond to 1 and 2, 
resp. the -CH&Hr bridges, however, are not taken into 
account. The resonance integrals u of the po-pm-type 
overlap between D and A were chosen between u = 0 and 
g = 0.25. The last value might be in the right order of 
magnitude for an interplanar spacing of about 3 A (cf 
ref.‘?. Only overlap between opposite C atoms was taken 
into account. The sign of u is dependent on the 
orientation of the p,-orbitals in D and A against each 
other; it can be chosen arbitrarily, since HMO-theory with 
only one P.-atomic orbital per atom is invariant against 
rotations of 180”.” 

Orbital energies E, electronic transition energies Acbr 
and transition moments pi-t were calculated for the 
1,4&enzoquinone/hydroquinone pair in the pseudogemi- 
nal and pseudoortho orientation (I and II, resp.) and the 
corresponding [2.2]paracyclophane quinhydrones 1 and 2. 
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Fig. 2. Transition energies Arc, and the norm IpckJ of the transition moments p Ct for the lowest CT-transitions of 1, 
IIand 1,Zasafunctionof (T (-noCf’-transition). 
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Our HMO calculations agree well with the experimental 
data assuming 

(i) the broad CT-band of 1 to be composed of two 
electronic transitions with nearly the same energy, 

(ii) the low intensity of the tirst CT-band in 2 being the 
result of the low transition moment of the first symmetry 
allowed CT-transition, and 

(iii) the strong second CT-transition of 2 being 
responsible for the shoulder at A = 377 nm. 

This is demonstrated in Fig. 3 where a direct 
comparison is made between the experimental spectra 
(from ref.2) and the calculated transition energies and 
transition moments. 

Fig. 3. Experimental electronic spectra vs calculated reciprocal 
transition energies (A [nm] = 19s + 149/A~,~) and transition mo- 

ments for o = 0.25 of 1 (-) and 2 (----). 

Note added in proof. PPP-calculations5 with inclusion of 
configuration interaction lead to similar qualitative results 
as compared to HMO-calculations. 

z-polarized CT’-transitions for a# 0 (in 1, however, 
pk.ro = pb10 = 0 for symmetry reasons). The transition 
((p,+ cplO) is polarized parallel to the ring planes and is no 
W-transition. 

As can be seen from Fig. 1 the orbital energies of 1 and 
2 (as those of I and II, resp.) differ mainly in the behaviour 
of the highest occupied orbital (pp. HOMO) and of the one 
below (&: in 1 (and 1) both get about the same energy 
when approaching u = 0.25 whereas in 2 (and II) ‘ps 
remains almost unaffected by changes of u. Therefore, for 
1 (and I) two CT-transitions of nearly the same energy are 
derived for the absorptions at longest wavelength (Fig. 2). 
In contrast, the two corresponding CT-transitions of 2 
(and II) have different energies, the first being shifted to 
longer, the second to shorter wavelength as compared to 1 
(or I, resp.). The first CT-transition (p9+ ‘pro shows a high 
transition moment only in 1 whereas the second 
CT-excitation cps -+ ‘pro shows a high transition moment for 
both 1 and 2. 
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